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A MULTIPLE NONLINEAR REGRESSION MODEL FOR 
ESTIMATING INPUT-OUTPUT VALUES WITH PARTIAL 
INFORMATION 
 

Abstract. The paper aims to find an effective method for estimating input-
output (I-O) values in the target year when the original I-O table is incomplete. By 
examining the input and output relationship hidden in the RAS method, we find a 
multiple nonlinear regression model embedded in this method to achieve this well. 
Specifically, each element value in the target I-O table is closely related to its 
corresponding element in the original I-O table and the input and output growth 
rates of each sector. The performance of the proposed model is validated by 
extensive experiments based on simulated and real I-O datasets. 
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1. Introduction 
 
Input-output (I-O) analysis was initially developed as an effective tool for 

regional, national, and international economic analyses based on the 
interdependence of economic sectors or regions (Oosterhaven, 2019). A sector 
could be a region or an industry. Nowadays, it has been widely used in various 
areas such as economic analysis (Haddad et al., 2021), urban carbon 
transformations (Chen et al., 2017), energy trade and consumption analysis (Cui et 
al., 2015), and logistics forecasting (Hwang, 2014). 

I-O analysis is based on an I-O table capturing flows among sectors or 
industries in different regions or nations (Miller and Blair, 2009; Oosterhaven, 
2019). The I-O table is fundamental to I-O analysis, and it is crucial to building a 
reliable I-O table for the base year using data from a variety of economic sectors. 
The collection of these data requires considerable effort, resources, and time 
(Mahajan et al., 2018). Statistical agencies usually collect thorough I-O statistics at 
regular intervals and compute detailed I-O tables for different time periods. 
However, due to the dynamic nature of economic activities, the I-O relationship in 
the base year (i.e., the original I-O) may not reflect the input and output of 
subsequent years. Given some element values in the original I-O table and some 
constraints, this paper investigates how to obtain corresponding element values in 
the target I-O table. 

Researchers have developed new methods to update an I-O table in a target 
year (i.e., the target I-O) so that it is more representative of the situation in the 
target year (Clark and Chenery, 1959; Miller and Blair, 2009; Stone and Brown, 
1962). Methods for updating I-O tables can be classified as optimization methods 
such as the RAS  method and its variants (Lenzen et al., 2009) and biproportional 
techniques (Lahr and De Mesnard, 2004), extrapolation methods for estimating 
trends and prediction coefficients (Miller and Blair, 2009), and expert methods 
such as cross-impact analysis (Weimer-Jehle, 2006). 

Since an I-O table describing the total input and output volumes of a target 
year can be obtained relatively cheaply with the RAS method, it has received 
extensive attention from both researchers and practitioners (Hwang, 2014; Lahr 
and De Mesnard, 2004; Lenzen et al., 2009; Miller and Blair, 2009; Weimer-Jehle, 
2006). Given an original I-O table and the total input and output volumes of each 
economic sector for the target year, the RAS method derives a target I-O table that 
satisfies the I-O constraints of the target year by iteratively updating the direct 
technical coefficients in the original I-O table. The total input or output volumes 
refer to the row or column sums of the desired I-O table, respectively. Lecomber 
(1975) proposed the Modified RAS (MRAS) method, which uses traditional 
minimum distance optimization to update the I-O table. The Generalized RAS 
(GRAS) method proposed by Junius and Oosterhaven (2003) allows for some 
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negative elements in the I-O table, which further extends the scope of the RAS 
method. While Jackson and Murray (2004) claimed that minimizing squared 
differences of the elements in GRAS leads to a smaller information gain, 
Oosterhaven (2005) pointed out that this conclusion is theoretically impossible. 
Valderas-Jaramillo and Rueda-Cantuche (2021) extended the generalized RAS 
(GRAS) technique to a multi-regional or multi-national setting for the estimation of 
multiple matrices in an integrated framework. Lenzen et al. (2009) proposed 
Konfliktfreies RAS (KRAS), which combines the characteristics of MRAS, and 
GRAS and allows the application of the RAS method in the case of data conflicts.  

In existing applications, the RAS method and its variants operate based on 
the original I-O table in the base year and this I-O table is iterated to obtain the 
target I-O table. However, in some real-world applications, it is difficult to obtain a 
complete original I-O table (Lenzen et al., 2009) and easier to obtain the flow 
between one sector and its associated sectors. In certain cases, such as when sectors 
are disaggregated or where input recipes are updated to reflect new technologies 
(Wolfram et al., 2016), we may only be interested in I-O data for a certain sector or 
certain elements of the target year. Similar cases widely exist in the estimation of 
freight, population and capital flow movement between certain regions or sectors. 
For example, in logistics sector, the logistics authority of a city needs to estimate 
the freight volumes in a target year between this city and its associated cities so 
that the city can make more effective logistics and traffic planning (Liu et al., 
2018). In this case, the city can only obtain the flow between this city and its 
associated regions, but cannot obtain and does not care about the flows between 
associated regions. This leads to an open and interesting research problem: when 
the original I-O table only contains data from certain elements, can we estimate 
their corresponding I-O values in the target year? This is the original motivation of 
this paper.  

We first model the mathematical relationship reflected by the RAS method 
and then use this relationship to estimate the values of specific elements in the 
target I-O table in the absence of information on other elements. We then assess the 
performance of our method by using experiments and comparing our method with 
the conventional RAS method based on both simulated and real-world I-O data 

 
2. Materials and methods 
 
2.1. Traditional RAS method 

 
Consider a closed economic system with N sectors (regions). All element 

values in the I-O table in the base year are given, as shown in Figure 1. The first N 
rows and N columns correspond to sectors 1 to N. Let xij denote the flow from 
origin sector i to destination sector j, which is the output volume generated by 
sector i for sector j. Let ui stand for the intermediate total output from sector i, 
defined as the sum of the flow from sector i to N sectors (i.e., ݑ = ∑ ேୀଵݔ ). Let vj 
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denote the intermediate total input to sector j, defined as the sum of the flow from 
N sectors to sector  j (i.e., ݒ = ∑ ேୀଵݔ ). Here, ui and vj are placed in the last 
column and the last row of the I-O table, respectively. The total output of all sectors 
is equal to the total input (i.e., ∑ ேୀଵݑ = ∑ ேୀଵݒ ). 

We use the superscripts 0 and 1 to represent the base year and the target 
year, respectively, so M0 and M1 correspond to the I-O tables of the base year and 
the target year, respectively. Given the original I-O table ܯ = ൛ݔ|1 ≤ ݅ ≤ܰ, 1 ≤ ݆ ≤ ܰൟ , the set ܷଵ = ൛ݑଵ|1 ≤ ݅ ≤ ܰ ൟ  of row sums, and the set ܸଵ =൛ݒଵ|1 ≤ ݆ ≤ ܰ ൟ of column sums in the target year, the traditional RAS method 
adopts the iterative procedure (Procedure 1) below to obtain the element values in 
the target I-O table M1, where the sum of the ith row (or jth column) is equal to or as 
close as possible to the corresponding desired row sum ui (or column sum vj ) in the 
target I-O table. 
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Figure 1. Original and target I-O tables and their symbols: a) I-O table M0 in 

the base year, and b) I-O table M1 in the target year. In M0 and M1, some cells 
are shaded in dark or light gray, which will be further explained in section 2.2. 
 

Procedure 1: 

Define ݎ = ௨భ∑ ௫ೕೕಿసభ , 1 ≤ ݅ ≤ ܰ and ݏ = ௩ೕభ∑ ௫ೕಿసభ , 1 ≤ ݆ ≤ ܰ 

While {|ݎ − 1| > ݏ| or ߝ − 1| >  ,{ߝ
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In the traditional RAS procedure above, we let ε to denote the error 

tolerance, which is a small positive number (e.g., 0.001 or 0.005). 
 
2.2. Using random values to replace missing values 
 
To model the mathematical relationship reflected by the RAS method, we 

use random values to replace missing values in the base year first and examine how 
they affect the output values in the target year. For convenience of presentation, we 
assume that only the flow between sector 1 and its associated sectors are known 
and other values are missing in the base year. It is reasonable since comparing to 
obtaining the complete I-O table, it is much easier to obtain the flow between the 
sector we care about and its associated sectors in many real-world settings (e.g., 
regional I-O analysis, regional freight and trade projection). The total output of all 
sectors is equal to the total input (i.e., ∑ ேୀଵݑ = ∑ ேୀଵݒ ). Let F0 (F1) denote the 
set consisting of the elements from both the first row and the first column of M0 
(M1), and R0 the unknown flows between the remaining N−1 sectors in the base 
year, as shown in Figure 1. In M0, F0 and R0 are shaded in dark and light gray, 
respectively. In M1, only F1 is shaded in dark gray. We aim to obtain the element 
values in F1 when only F0 is known in M0. The traditional RAS method cannot be 
used to handle this case since it does not work without a complete original I-O 
table. This case is realistically meaningful since sometimes it is hard to obtain a 
complete original I-O table or even a complete data of the corresponding row or 
column. 

Let F1 represents the flow between the first sector and its associated N−1 
sectors in the target year, and the effects of R0 element values on F1 may be small. 
It is thus natural to assume that using random variables within a certain range based 
on historical data to replace missing values in R0 could have little effects on the 
values in F1. If the assumption holds, the values in F1 can then be obtained by the 
traditional RAS method whichever random element values are used in R0. We will 
verify this assumption based on a large number (K) of repetitive experiments 



 
 
 
 
 
 
Jing Yang, Jiahao Liu, Zhaoxia Guo, Siquan Zhang, Lei Gao, 
Michalis Hadjikakou, Brett Bryan 
___________________________________________________________ 

174 
 

(indexed by k). In each experiment k, we randomly change the element values in R0 
and perform the RAS method to re-balance the I-O table. By so doing, we obtain 
the element values of F1 in the target I-O table. 

Let ݔଵ denote the element value of row i and column j of M1 in the kth 
experiment. We take the set of element values in F1 from the first experiment as the 
reference values. Let ݁  denote the relative error in the kth experiment for the 

element of row i and column j of M1. We have ݁ = หݔଵ − ଵଵݔ/ଵଵหݔ ⋅ 100%. 

Taking ݁  obtained in experiment k as an independent sample, we can obtain a 
total of (ܰଶ−1)·(k−1) samples of relative error values in k repeated experiments. By 
analyzing the statistical results (e.g., mean and quantiles) of these samples, we can 
quantify the effects of changes in R0 element values on F1 element values. 

The set V1 of input totals and the set U1 of output totals for all sectors are 
given in the RAS method. When most element values are missing in the original I-
O table, we cannot directly obtain the values of V1 and U1. However, we can set V1 
(U1) to V0 (U0) multiplied by specific growth rates as these growth rates are 
equivalently given by the RAS method. Let ܽ ( ܾ) denote the growth rate of the 
output (input) total of sector i (j) from the base year to the target year. We have ܽ = ݑ/ଵݑ) − 1) × 100% and ܾ = ݒ/ଵݒ) − 1) × 100%. The growth rate range 
of [−50%, 150%] covers the majority (>99.4%) of real-world applications of I-O 
analysis according to data in the World Input-Output Database (WIOD)1. Indeed, 
we analyzed all I-O datasets in WIOD in 2001–2014 and found that in 99.7% of 
cases, growth rates were less than 150%, while in 99.6% of cases, growth rates 
were greater than −50%. 

Without the loss of generality, we set N to 19 and k to 105 in our validation 
experiments. Growth rates were randomly generated within [−50%, 150%] in each 
experiment. The random values in R0 and the constant values in F0 obeyed a 
uniform distribution within [1, 108]. We conducted extensive experiments based on 
various distributions, such as uniform, normal, and Poisson, with different 
distributions, which led to very similar results. For each element ݔଵଵ or ݔଵଵ (2 ≤ j 
≤ N) in F1, we recorded its 105−1 relative error values from the 105 experiments. 
The validation experiment is presented in the Supplementary Information2. 

Based on this experimental setting, we produced and recorded the average 
relative errors of all elements in F1 in each experiment. We obtained 105−1 average 
relative error values from 105 experiments. As shown in Table 1, 90% of average 
relative errors were no greater than 2.20%, while 100% of average relative errors 
were no greater than 2.95%. The value of element ݔଵ  in F1 obtained by the RAS 
method was almost independent of element values in R0. This indicates that our 

                                                 
1 http://wiod.org/database/wiots16 
2 https://www.dropbox.com/s/ab8pgas9o5v5vty/SupplementaryInfo.zip?dl=0 
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assumption of replacing element values of R0 with random values is reasonable and 
has little effect on the accuracy of F1 element values. 

 
Table 1. Maxima of average relative errors for different data percentages in 

105 experiments 
Percentage  
of data 

10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Maximum 
average 
relative error 

1.29% 1.40% 1.48% 1.55% 1.62% 1.69% 1.77% 1.87% 2.20% 2.95% 

 
2.3. Multiple nonlinear regression model embedded in the RAS  
       method 
 
As the element value ݔଵ  in the target I-O table M1 can be determined from 

the corresponding element value ݔ  in M0 and the set {ܽ} ({ ܾ}) of growth rates 
of each sector’s total input (output), this section explores the relationship between 
these variables with a multiple nonlinear regression model based on a large number 
of numerical experiments. The procedure for modeling the relationship involves 
two steps: variable selection and model construction. 

 
2.3.1. Variable selection 
 
The value of the elements ݔଵ  in the target I-O table M1 may be closely 

related to ݔ , ܽ  and ܾ . For simplicity of presentation, we define two I-O ratio 
(IOR) variables  ߙ  and ߚ  to replace ܽ  and ܾ  in model construction. Let αi (βj) 
denote the ratio of the output (input) total of sector i (j) in the target year to its 
corresponding value in the base year. That is, ߙ = ݑ/ଵݑ × 100% = ܽ + 1 and ߚ = ݒ/ଵݒ × 100% = ܾ + 1. Let μ, σ, tmax, and tmin represent the mean, variance, 
maximum, and minimum of all I-O ratios, respectively. For example, we have 

max 1 1=max{ ,..., , ,..., }N Nt α α β β . We set γ = tmax / tmin. We selected seven variables 
ݔ) , αi, βj, μ, σ, tmax, and tmin) and their interaction terms as candidate variables for 
the multiple nonlinear regression model. To simplify the model, we first used 
Pearson correlation coefficients to calculate linear correlations between each 
candidate variable and the variable ݔଵ . The 15 candidate variables with 
correlations >0.4, listed in Table 2, were used as independent variables in the first 
iteration of model fitting. 
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Table 2. Candidate variables and their correlations with ࢞ . 

Variables ݔ ݔ ߚߙ ݐߚߙ ݔ ߛߚߙ ݔ ݔ ߙ ߚ ݔ ௫ݐߙ ݔ ݔ  ௫ݐߚ
Correlation 
with ݔଵ  

0.98 0.92 0.92 0.9 0.89 0.88 0.88 0.87 

Variables ݔ ݔ ௫ݐ ݔ ݐ ݔݐߙ ݔݐߚ ߛߙ ݔ ݔ ߛߚ   ߛ

Correlation 
with ݔଵ  

0.78 0.76 0.65 0.64 0.63 0.58 0.45  

 
2.3.2. Model construction 
 
In a closed economic system with N sectors, we assumed that the element ݔ  in the original I-O table M0 satisfies a normal distribution within [xmin, xmax] and 

the I-O ratio variables (αi and βj) of each sector satisfy a normal distribution within 
[tmin, tmax]. Based on these settings, we randomly generated different sets of M0, αi, 
and βj in S repeated experiments. Let (ݔ , ଵݔ ) denote an element pair consisting of 

the element value ݔ  in M0 and its corresponding value ݔଵ  in M1. In each 
experiment, given the set of randomly generated M0, αi, and βj, we used the RAS 
method to obtain the corresponding M1 and randomly selected one element pair 
ݔ) , ଵݔ ). We then recorded the corresponding parameters (αi, βj, μ, σ, tmin, tmax, and 
γ). We obtained one input and output sample pair in each experiment, where these 
parameters and ݔ  made up the sample input and ݔଵ  represented the sample 
output. Accordingly, we obtained S input and output sample pairs in S repeated 
experiments. If S is sufficiently large, these sample pairs can represent the input 
and output relationship between the input variables and ݔଵ . We used these samples 
as training and test samples for model construction and validation. 

A large number of variables can lead to the “curse of dimensionality” in 
the model-fitting process. To avoid this problem, we used stepwise bidirectional 
elimination (Jennrich and Sampson, 1968) to construct the multivariate nonlinear 
regression model. This approach starts with no variables in the model. In terms of 
F-tests, we added the variable (if any) whose inclusion improved model fitting the 
most (e.g., the variable with the maximum partial sum of squares) and then deleted 
the variable (if any) whose loss deteriorated model fitting the most. This process 
was repeated until variables included in the model could not be eliminated and no 
new variables could be introduced. We selected the model with the maximum 
coefficient of determination (R-squared). The obtained set of independent variables 
and the corresponding coefficients constituted the final multivariate nonlinear 
regression model. 

We considered a closed economy with 20 sectors (N = 20) and set xmin = 0, 
xmax = 107, tmin = 50%, tmax = 250%, and S = 60,000. Using stratified sampling, 
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50,000 sets of simulated input and output sample pairs were obtained as training 
samples for model fitting, while the remaining 104 simulated sample pairs were 
used as test samples. Let ݔොଵ  denote the estimate of ݔଵ . For stepwise bidirectional 
elimination, we used a variable entrance probability of 0.05 and a 
removal probability of 0.1. The following multiple nonlinear regression (MNR) 
model was obtained: 

1 0 0 0 0 0

0

min

ma
0

x

ˆ 0.974 0.56 0.212 0.483 0.046

0.242 0.088

ij ij j ij i ij i j ij ij i j

ij j ij i

x x x x x t x

x t x

β α α β α β

β α

γ

γ

= + + − +

− −
(1) 

Equivalently, we have 
1 0 0 0 0

0 0 0

min

max

ˆ 0.974 ( 0.56 ( 0.212 ( 0.483

0.046 ( 0.242 (

1) 1) 1)( 1)

1)( 1) 1) 0.088 ( 1)

ij ij j ij i ij i j ij

ij i j ij j ij i

x x b x a x a b x t

x a b x b t x aγ γ

= + + −

+

+ + + +

+ + +− −+
 

                 (2) 
An ANOVA test was performed showing that the variables in the MNR 

model were statistically significant at a level of 0.05. The adjusted R-squared of 
our MNR model was 0.991. The MNR model included multicollinearity since its 
terms are dependent, but multicollinearity was acceptable in this model because: (i) 
it did not decrease predictive reliability and only affected coefficient estimates and 
(ii) we only cared about model performance and not regression coefficients (Stock 
and Watson, 2015). We examined the Pearson correlation coefficients between the 
five variables (ݔ , αi , βj, tmin, and tmax) used in the MNR model and found that 
these variables were not significantly correlated, indicating that multicollinearity 
was only caused by the interaction of the five variables. This was not an issue as p-
values for interaction terms are not influenced by multicollinearity. 

 
2.3.3. Model validation 
 
Both simulated and real-world data were used to perform performance 

validation on our MNR model. We used the 104 sets of simulated test samples 
obtained from stratified sampling (described in sub-section 2.3.2) as simulated data. 
For each test sample, we recorded the relative error of the estimated output ݔොଵ  in 

the MNR model compared to the actual output ݔଵ  generated by the RAS method. 
The actual output of the RAS method is generated based on a complete original I-O 
table according to the method described in section 2.2. A statistical analysis was 
performed on the relative errors of the MNR model’s outputs for all test data. 

We used real-world I-O data to further validate the accuracy and 
generalization of the MNR model in real-world applications. We used all available 
I-O data from 1995 to 2012 (a total of eight years) from the official website of the 
China Input-Output Association3. Between 1995 and 2012, the classification of 
                                                 
3 http://www.stats.gov.cn/ztjc/tjzdgg/trccxh/zlxz/trccb/201701/t20170113_1453448.html 
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China’s domestic economic sectors has changed due to institutional reforms and 
restructuring, with the number of economic sectors increasing from 33 in 1995 to 
42 in 2005 and decreasing to 39 in 2012. We adjusted the I-O tables to make them 
comparable. First, rows and columns with similar industrial characteristics were 
aggregated. Second, we removed I-O tables from years with relatively many 
missing values (i.e., years 2000 and 2012). We thereby obtained six I-O tables with 
28 economic sectors. On the basis of the six tables, we generated five validation 
datasets (i.e., I-O table pairs (M0, M1)) by grouping pairs of I-O tables from 
adjacent years. The six I-O tables and five validation datasets are shown in the 
Supplementary Information4. 

The independent variables required in the MNR model were obtained from 
M0 and M1. In the five validation datasets (1–5), all element values were within [1, 
106] and their I-O growth rates ranged within [−72%, 268%], [−24%, 136%], [35%, 
490%], [24%, 255%], and [23%, 127%], respectively. The average growth rates of 
each sector were ~50%. Each validation dataset (M0, M1) included 784 (28 × 28) 
validation sample pairs. For each validation sample pair, we took as inputs ݔ  in 
M0 and related independent variables and used the MNR model to calculate 
corresponding model outputs ݔොଵ . We calculated the relative error of each model 
output.  

For both simulated and real-world data, given the I-O table in the base year 
and growth rates, we use the RAS method to generate the target I-O table directly, 
and use the MNR model to generate the element values in the target I-O table in 
turn.  

 
2.4. Sensitivity analysis 
 
We conduct the sensitivity analysis to examine the effects of different 

parameter settings on the performance of the MNR model from three perspectives, 
including different I-O values, different growth rate ranges, and different I-O data 
dimensions. We considered four I-O value ranges ([0, 104], [0, 106], [0, 108], and 
[104, 107]), four growth rate ranges ([−50%, 150%], [−50%, 200%], [−50%, 300%], 
and [−70%, 300%])5, and seven I-O data dimensions (10, 20, 30, 50, 80, 100 and 
200), respectively. For each range or each data dimension, with other parameter 
settings fixed as described in sub-section 2.3.2, we randomly generated 105 test 
samples according to the method described in the same sub-section, and calculated 
the relative error of the MNR model output for each test sample. 

 
 

                                                 
4 https://www.dropbox.com/s/ab8pgas9o5v5vty/SupplementaryInfo.zip?dl=0 
5 Four corresponding IOR value ranges are [50%, 250%], [50%, 300%], [50%, 400%] and [30%, 
400%]. 
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3. Results 
 
3.1. Validation results for simulated data 
 
For the 104 simulated test samples, the mean of relative errors of model 

outputs was 4.77%. As shown in Table 3, 90% of relative errors were no greater 
than 9.18% and the maximum relative error was 12.51% for all test samples. These 
results show that the MNR model can map the input and output relationships of 
sample data and approximate the RAS method under the parameter settings, 
including I-O value ranges [0, 107]) and growth rate range [−50%, 150%]. 

Table 3. Results of maximum relative errors of model outputs for different 
data percentages in test samples 

Percentage 
of data 

10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Maximum 
relative 
error 

0.30% 0.61% 0.98% 1.47% 2.15% 3.02% 4.23% 5.99% 9.18% 12.51
% 

 
3.2. Validation results for real-world data 
 
Figure 2 shows the comparison results of the maximum relative errors 

generated by the MNR model and the RAS method for datasets 1-5. For dataset 5, 
the relative errors of 90% of validation samples generated by the MNR model were 
no greater than 27.59% and the means of these relative errors were 14.02%. 
However, 90% of the relative errors generated by the MNR model for datasets 1 to 
4 were less than 173.88%, 155.73%, 85.33%, and 44.76%, respectively, and the 
means of these relative errors were 93.74%, 67.84%, 62.52%, and 22.69%, 
respectively. As for the relative errors of the corresponding outputs generated by 
the RAS method, for datasets 1 to 5, 90% of the relative errors were less than 
231.27%, 165.41%, 93.66%, 61.44%, and 28.63%, respectively, and the means of 
these relative errors were 111.5%, 68.9%, 68.92%, 31.26%, and 12.48%, 
respectively. Our MNR model and the RAS method exhibited similar trends in 
relative errors over different percentages of validation samples for each dataset 
(Figure 2). The key advantage of the MNR model over the RAS method is that the 
MNR model does not need the complete I-O table to generate target values, which 
is much simpler to use. Comparing to the relative errors for the simulated dataset in 
section 3.1, both the RAS method and the MNR model led to larger relative errors 
for datasets 1 to 5. The reasons for this are twofold. First, the real-world datasets 
involve a multi-year period and usually show the larger growth rates than the 
simulated dataset, which could lead to the larger relative errors. Second, the real-
world datasets may contain some information that cannot be handled well by the 
classical RAS method. Even so, the MNR model performs better than the RAS 
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Table 4. Results of maximum relative errors of model outputs for different 
data percentages in test samples under different I-O value ranges 

 
Percentages 10% 20% 30% 40% 50% 60% 70% 80% 90% 95% 

[0, 104] 1.07% 2.15% 3.3% 4.51% 5.87% 7.33% 9.11%
11.62
%

15.74
%

20.05
% 

[0, 106] 1.07% 2.17% 3.3% 4.53% 5.84% 7.37% 9.2% 
11.66
%

15.79
%

20.19
% 

[0, 108] 1.06% 2.14% 3.28% 4.52% 5.84% 7.34% 9.19%
11.68
%

15.77
%

20.28
% 

[104, 107] 1.06% 2.17% 3.3% 4.5% 5.82% 7.33% 9.17%
11.66
%

15.79
%

20.3% 

 
Figure 3 shows the maximum relative errors of the MNR model for test 

samples from different growth rate ranges. It can be found that the accuracy of the 
MNR model decreased as the growth rate range increased, with the model under-
fitting when the growth rate range was large. For the largest growth rate range 
([−70%, 300%]), the maximum relative error was around 37% and 15% of test 
samples showed relative errors >20%. These results indicate that the value of ݔଵ  in 

M1 is less related to ݔ  and is affected by other elements in the original I-O table 
when the growth rate range is large, consistent with the results from section 3.2. 
However, growth rate ranges larger than [−50%, 150%] seldom occur in real-world 
applications. 

Figure 4 shows the statistical results of the relative errors. It can be seen 
that the MNR model performs well across test samples of different I-O data 
dimensions. The relative errors of 90% test samples are less than 10%, and the 
maximum relative error is less than 17.5%. We can thus conclude that the 
dimension of the I-O table (i.e., the number of sectors) has a negligible effect on 
the MNR model. That is, our MNR model can be applied to I-O tables with various 
dimensions. 
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once all the elements of the target IO table are estimated, according the results 
presented in Section 4.    

The RAS method and its variants, such as MRAS (Lecomber (1975), 
GRAS (Junius and Oosterhaven (2003) and KRAS (Lenzen et al. (2009), rely a 
complete original I-O table to calculate the I-O values in the target table, and their 
calculations are usually based on a nonlinear optimization or iterative procedure 
(Bacharach, 1970). Compared to these existing models, the proposed model has a 
clear and direct mathematical relationship, which is easier to code and has a better 
computational performance because this model does not undergo the iterative 
process. 

 
4.2 Potential uses of the MNR model 
 
For the most majority of growth rate ranges (e.g., [-50%, 150%]) in real-

world I-O applications, the proposed model performs similarly to the classical RAS 
method, for any I-O table dimension and any I-O value ranges. The model can thus 
be used as an effective alternative to the RAS method and applied widely in real-
world applications of I-O table rebalancing due to its ease-of-use. Relevant 
applications include projecting the volumes of freight movement, estimating 
population movement and capital flow between certain regions or economic 
sectors, and so on. 

It is not easy to obtain the complete original I-O tables in many real-world 
applications, especially for the construction of international and interregional I-O 
tables. Unfortunately, it is hard to use traditional I-O analysis methods in these 
cases with only partial original data (Lenzen et al., 2009). The proposed model can 
handle these cases effectively. Our MNR model is capable of effectively estimating 
the element value ݔଵ  of the target I-O table based on only its corresponding 

element ݔ  in the original table along with the input and output growth rates of 
each sector. Compared with existing RAS methods and variants, the proposed 
model should be the first choice for estimating the elements in the target table 
when only partial elements are available (concerned) in the original (target) I-O 
table. 

 
4.3 Limitations and future research 
 
As presented in sub-section 3.3, the growth rate ranges of I-O values could 

have effects on approximating the performance of the proposed model to the RAS 
method. The proposed model cannot fit the RAS method well when the three 
growth rate ranges wider than [-50%, 150%] are considered, although these ranges 
seldom occur in real-world I-O applications. The reason is that with the increase of 
growth rate range, the element value of the target I-O table modelled by the 
classical RAS method will be related to more elements instead of only the 
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corresponding element value in the original I-O table. Even so, the real data-based 
validation presented in section 3.2 has showed that the MNR model is able to 
provide the estimation performance close to those generated by the RAS method. 
Our future research will use I-O tables from other commonly used I-O databases 
(e.g., EXIOBASE and WIOD) to further examine the performance of the MNR 
model, and also use this model in more real-world I-O applications.  

We obtain the MNR model by fitting the I-O relationship of the traditional 
RAS method. However, other RAS variants may also contain similar simple and 
effective mathematical relationships. A prospective future research direction is to 
examine the I-O relationships of other RAS variants (e.g., GRAS) and explore 
simple and effective alternatives for these models. Theoretical proof of the simple 
relationship formulated by the MNR model in the future research is also required, 
since the MNR model is constructed and validated based on extensive numerical 
experiments. 

 
5. Conclusions 
This paper contributes the literature by developing the first method for the 

element estimates of incomplete I-O tables. We proposed an effective multivariate 
nonlinear regression model (the MNR model) for updating I-O tables with only 
partial information by investigating the mathematical relationships within the RAS 
method based on extensive numerical experiments. To the best of our knowledge, 
this model is the first for estimating I-O values in I-O analysis when only 
incomplete original I-O table is available. Specifically, given reasonable growth 
rate ranges (e.g., [-50%, 150%]) as well as the input growth rate and the output 
growth rate of each sector, the element value ݔଵ  in the target I-O table ܯଵ  is 

highly dependent on its corresponding element ݔ  but almost independent of the 
other element values in the original I-O table ܯ. We also found that the growth 
rate ranges of I-O table have large effects on the estimation performance of our 
MNR model, which is similar to the RAS method. As the growth rate range 
increases, the estimation performance of the model gradually decreases, in a way 
that is comparable to the results of the conventional RAS Method. The value 
ranges and the dimension of I-O data have few effects on the estimation 
performance of the MNR model. The model can be used as an effective alternative 
to the RAS method and applied widely in real-world I-O table rebalancing due to 
its ease-of-use and comparable performance with the RAS method. 

 
Data Availability Statement 
 
The data that support the findings of this study are openly available at 

https://www.dropbox.com/s/ab8pgas9o5v5vty/SupplementaryInfo.zip?dl=0. 
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